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The problem of coincidences of lattices in the space Rp;q, with p + q = 2, is

analyzed using Clifford algebra. We show that, as in Rn, any coincidence

isometry can be decomposed as a product of at most two reflections by vectors of

the lattice. Bases and coincidence indices are constructed explicitly for several

interesting lattices. Our procedure is metric-independent and, in particular, the

hyperbolic plane is obtained when p = q = 1. Additionally, we provide a proof of

the Cartan–Dieudonné theorem for Rp;q, with p + q = 2, that includes an

algorithm to decompose an orthogonal transformation into a product of

reflections.

1. Introduction

Clifford or geometric algebra has proved to be a useful

language in many areas of physics, engineering and computer

science (see, for example Bayro-Corrochano & Sobczyk,

2001). In particular, in crystallography, Hestenes (2007) and

Hitzer & Perwass (2005) have presented a geometric algebra

approach to symmetry groups and Aragón et al. (2001) have

used Clifford algebra to study the problem of facetting in

quasicrystals.

In crystallography, mostly in the context of grain bound-

aries, one uses the so-called coincidence site lattice (CSL)

theory. There are many useful references in this field, but for

the purposes of this work the mathematical formulation by

Baake (1997) and Reed et al. (2004) are useful. In a previous

communication (Aragón et al., 2006) we showed that the CSL

problem requires the use of the Cartan–Dieudonné theorem

and we presented a constructive way of producing the

isometries whose existence states the Cartan–Dieudonné

theorem. In this way we were able to tackle the coincidence

problem for lattices in Euclidean spaces Rn, providing explicit

expressions for bases and coincidence indices in planar lattices

(Rodrı́guez et al., 2005). In our Clifford algebra approach to

this problem, reflections are considered primitive isometries

and we have found conditions under which a given reflection is

a coincidence isometry. This proposal has proved to be useful

as an approach to the general, n-dimensional case (Zou,

2006a,b).

The purpose of this communication is to extend the results

of Rodrı́guez et al. (2005) to lattices in spaces Rp;q, restricting

our attention mostly to the case pþ q ¼ 2. In particular:

(a) a proof of the Cartan–Dieudonné theorem for Rp;q

(pþ q ¼ 2) is given that includes an algorithm for the

construction of the reflections that decompose a given

orthogonal transformation (Proposition 1);

(b) the theory of coincidence lattices is formulated in Rp;q

(x4);

(c) it is shown that, as in Rn, for pþ q ¼ 2 any coincidence

isometry can be decomposed as a product of at most two

reflections by hyperplanes defined by vectors of the lattice

(Proposition 2); and

(d) the problem of the CSL is solved for some interesting

lattices in Rp;q, where pþ q ¼ 2, providing analytic expres-

sions for the coincidence index and the basis of the

coincidence lattice (xx5 and 6).

Concerning this last point, we should emphasize that the

most interesting case is when p ¼ q ¼ 1, that is, the hyperbolic

plane. This metric-independent approach, however, allowed

us to solve the general case, including when p ¼ 2 and q ¼ 0,

R2, already worked out in Rodrı́guez et al. (2005), and

p ¼ 0; q ¼ 2.

In x2 the definition and most relevant properties of Clifford

algebras for our purposes are presented. Finally, conclusions

are presented in x7.

Our results may enrich the field of the crystallography of

the hyperbolic plane, which has been useful for describing, for



instance, liquid-crystalline structures (Sadoc & Charvolin,

1989). Furthermore, we believe that Clifford algebras can be

the natural language for a generalized crystallography

(Mackay, 2002).

2. Clifford algebras

Detailed accounts of Clifford algebra can be found in Riesz

(1993), Porteous (1995), Chevalley (1954), Artin (1957),

Hestenes & Sobczyk (1985), and Lounesto (2001), and they

can be presented in various equivalent ways. However, the

simplest construction of the Clifford algebra Cl is by means of

generators and relations. In what follows let K be a field with

charðKÞ 6¼ 2, E a vector space over K and Q a non-singular

quadratic form on E over K. Thus, we can state (Ablamowicz

et al., 1991):

Definition 1. An associative algebra over K with identity 1 is

the Clifford algebra Cl of Q on E if it contains E and K ¼ K � 1

as distinct subspaces so that

(1) x2 ¼ QðxÞ for any vector x in E,

(2) E generates Cl as an algebra over K and

(3) Cl is not generated by any proper subspace of E.

One of the most significant consequences of this definition

is that, for any x; y 2 E,

2x � y ¼ xyþ yx ¼ Qðxþ yÞ �QðxÞ �QðyÞ: ð1Þ

In this paper we are concerned mostly with the Clifford

algebra with K ¼ R, E ¼ Rpþq (which we will write simply as

R
p;q) and Q the quadratic form given by

QðxÞ ¼ x2
1 þ x2

2 þ . . .þ x2
p � x2

pþ1 � . . .� x2
pþq: ð2Þ

This Clifford algebra will be denoted as Rp;q.

In terms of the canonical orthonormal basis of Rp;q,

fe1; e2; . . . ; epþqg we have

e2
i ¼ 1 for 1 � i � p;

e2
i ¼ �1 for p< i � pþ q; ð3Þ

eiej ¼ �ejei for i> j;

and, as a consequence of the last condition in Definition 1, to

guarantee the universal property,

e1e2 . . . epþq 6¼ �1: ð4Þ

Considered as a real vector space, the dimension of Rp;q is

2n and a basis of this space consists of the identity 1 and all

vector products of the form e
m1

1 . . . e
mn
n , where mi ¼ 0 or 1. The

elements of length k, like e1e2 . . . ek, are called k-vectors, and

linear combinations of k-vectors are called multivectors or

Clifford numbers.

The algebra Cl is a graded algebra, the elements of degree

zero are the scalars (the elements of the field), the elements of

degree one are the vectors in Rn, the elements of degree

(grade) two are linear combinations of products of two basis

vectors etc.

In Rp;q, the inverse of a multivector can be defined if some

conditions are satisfied (Hestenes & Sobczyk, 1985). In

particular, any vector x 2 R2, x 6¼ 0, has the inverse

x�1
¼

x

x2
: ð5Þ

An invertible vector x 2 Rp;q is called non-isotropic. Also,

an orthogonal basis fw1; . . . ;wpþqg of Rp;q is called non-

isotropic if each wi is invertible and wi � wj ¼ 0 for i 6¼ j

(i; j ¼ 1; . . . ; pþ q).

The symmetric part of the geometric product xy is asso-

ciated with the inner product

x � y ¼
xyþ yx

2
; ð6Þ

and the antisymmetric part corresponds to the outer

(Grassman) product

x ^ y ¼
xy� yx

2
: ð7Þ

Then, the geometric product xy can be written as

xy ¼ x � yþ x ^ y: ð8Þ

Many properties of the geometric, inner and outer product

between general multivectors are reviewed in the textbooks

already mentioned. A particularly useful fact is that the

outer product of three vectors a ^ b ^ c represents the

oriented volume of the parallelepiped with edges a, b and c.

n-dimensional oriented volumes are represented by the outer

product of n vectors.

Finally, we should mention one identity that will be exten-

sively used in the following sections:

x � y ^ zð Þ ¼ x � yð Þz� x � zð Þy ð9Þ

for all x; y and z 2 Rp;q.

3. Orthogonal transformations of Rp;q

The algebraic properties of geometric algebra provide us with

a convenient way of representing reflections with respect to

hyperplanes of Rp;q. Suppose a 2 Rp;q is a non-isotropic

vector and let Ha be its orthogonal complement, i.e.,

Ha ¼ fx 2 R
p;q
j a � x ¼ 0g. A reflection of a with respect to

Ha is an orthogonal transformation ’a with the following

properties:

’aðaÞ ¼ �a;

’aðwÞ ¼ w if w 2 Ha:
ð10Þ

This transformation ’a will be called ‘simple reflection by a’.

Lemma 1. The transformation ’a : Rp;q
! Rp;q, with a non-

isotropic, defined by

’aðxÞ ¼ �axa�1; ð11Þ

is orthogonal and corresponds to a simple reflection.

Proof 1. Since the Clifford algebra is distributive, we can easily

see that ’a is linear. Now, it remains to prove that ’a has the

properties (10). First, notice that
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’a að Þ ¼ �aaa�1
¼ �a: ð12Þ

Now, since a � w ¼ 0 for all w 2 Ha, then aw ¼ �wa and we

get

’aðwÞ ¼ �awa�1
¼ � �wað Þa�1

¼ w; w 2 Ha; ð13Þ

and this completes the proof.

Remark 1. Since the inverse of a simple reflection is the

reflection itself, we can easily prove that

’a xð Þ ¼ �axa�1
¼ �a�1xa ¼ ’a�1 xð Þ; ð14Þ

and also that

’a xð Þ ¼ ’�a xð Þ ð15Þ

for � 2 R, � 6¼ 0.

A useful formula, which will be used several times, is

’v xð Þ ¼ �vxv�1
¼ x� 2

x � v

v2
v; ð16Þ

for x; v 2 Rp;q, v non-isotropic. Indeed, since

vxv ¼ 1
2 vxþ xvþ ðvx� xvÞð Þv;

¼ 1
2 2x � vþ ðvx� xvÞð Þv;

¼ x � vð Þvþ 1
2 vxv� 1

2 xv2; ð17Þ

we have

�vxv�1
¼ � vxvð Þv�1v�1;

¼ � x � vð Þvþ 1
2 vxv� 1

2 xv2
� �

v�1v�1;

¼ � x � vð Þv�1
� 1

2 vxv�1
þ 1

2 x; ð18Þ

from where equation (16) readily follows.

If pþ q ¼ 2 we have that given an arbitrary orthogonal

transformation T we can always find a non-isotropic vector

a 2 R2 such that T is either a simple reflection by a [equation

(11)] or it is a reflection by some other basic vector followed

by a reflection by the vector a. In other words, the following

proposition describes a method to decompose an orthogonal

transformation T into a product of reflections.

Proposition 1. Let T : Rp;q
! R

p;q be an orthogonal trans-

formation and fw1;w2g a non-isotropic orthogonal basis of

Rp;q (pþ q ¼ 2). Then, there exists a non-isotropic vector

a 2 Rp;q such that

TðxÞ ¼
’aðxÞ if detðTÞ ¼ �1;
’a’wi
ðxÞ if detðTÞ ¼ 1;

�
ð19Þ

where i can be chosen as 1 or 2.

Proof 2. Throughout this proof, i and j can be chosen as 1 or 2

and when i and j appear in the same equation, it is assumed

that i 6¼ j. If TðwjÞ � wj is non-isotropic, we will see in what

follows that it is enough to take a ¼ TðwjÞ � wj . We start with

the following result:

’a TðwjÞ
� �

¼ wj; ð20Þ

which can be verified using equation (11), together with the

fact that ðTðwjÞÞ
2
¼ w2

j , or by the following geometrical

argument. Consider the rhombus spanned by the vectors wj

and TðwjÞ, i.e., the set f�wj þ �TðwjÞ j 0 � � � 1; 0 � � � 1g.

The diagonals of the rhombus are TðwjÞ þ wj and

TðwjÞ � wj ¼ a, which are perpendicular as can be easily

verified. Now, ’a is a reflection with respect to a vector

perpendicular to a, which is in fact TðwjÞ þ wj. From this, we

can see that ’aðTðwjÞÞ ¼ wj and, trivially, ’aðwjÞ ¼ TðwjÞ.

Now, from equation (20) we have that ’a TðwiÞð Þ is either wi

or �wi, because ’a TðwiÞð Þ and wj are orthogonal. If ’a TðwiÞð Þ

¼ wi, then, by linearity,

’aTðxÞ ¼ IðxÞ; ð21Þ

so

TðxÞ ¼ ’aðxÞ ð22Þ

for all x 2 Rp;q. Now, if ’a TðwiÞð Þ ¼ �wi, then

’wi
’a TðwiÞð Þ ¼ wi; ð23Þ

thus

’wi
’aTðxÞ ¼ IðxÞ;

TðxÞ ¼ ’a’wi
ðxÞ: ð24Þ

But if TðwjÞ � wj is isotropic, then v ¼ TðwjÞ þ wj is non-

isotropic (Proposition 4.2 of Porteous, 1995) and

’wj
’v TðwjÞ
� �

¼ wj; ð25Þ

as ’wj
’vðTðwjÞÞ ¼ wj and wi are orthogonal, then ’wj

’vðTðwiÞÞ

is either wi or �wi. If ’wj
’vðTðwiÞÞ ¼ wi, by linearity

’wj
’v TðxÞð Þ ¼ IðxÞ; ð26Þ

so

TðxÞ ¼ ’v’wj
ðxÞ ð27Þ

for all x 2 Rp;q. Now, if ’wj
’vðTðwiÞÞ ¼ �wi, then

’wi
’wj
’v TðxÞð Þ ¼ IðxÞ; ð28Þ

so

TðxÞ ¼ ’v’wj
’wi
ðxÞ ð29Þ

for all x 2 Rp;q. But, by associativity and equations (8) and (9),

we have

vðwjwiÞ ¼ vðwj � wi þ wj ^ wiÞ

¼ vðwj ^ wiÞ

¼ v � ðwj ^ wiÞ þ v ^ ðwj ^ wiÞ ð30Þ

and v ^ ðwj ^ wiÞ ¼ 0, since pþ q ¼ 2: Thus, it is enough to

choose a ¼ ðv � wjÞwi � ðwi � vÞwj to obtain

TðxÞ ¼ ’aðxÞ ð31Þ

for all x 2 Rp;q.

This proof was performed without using transcendental

functions as in Proposition 2 of Rodrı́guez et al. (2005) which,

in fact, is now a corollary of the above Proposition 1.

In general, any orthogonal transformation can be con-

structed with elements of Rp;q, since it can be obtained as a
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product of simple reflections by non-isotropic vectors. The

formal statement is:

Theorem 1 (Cartan–Dieudonné). Any orthogonal transfor-

mation, in a non-degenerate linear orthogonal space Rp;q with

n ¼ pþ q, can be decomposed into a product of at most n

simple reflections. That is, let T : Rp;q
! Rp;q be an ortho-

gonal transformation and let m � pþ q. There exist

a1; . . . ; am non-isotropic vectors such that

TðxÞ ¼ ð�1Þm
Qm
i¼1

ai

� �
x
Qm
i¼1

ai

� ��1

ð32Þ

for all x 2 Rp;q.

T is a rotation if m is even, and a reflection if m is odd. A

demonstration of this theorem by induction can be found in

Snapper & Troyer (1971).

4. Mathematics of the CSL problem

The CSL problem was formulated in more mathematical terms

by Baake (1997). Here, however, we are considering non-

Euclidean metrics and care must be taken to verify the

validity of these definitions and theorems when spaces with

non-zero signature are involved. Bearing this fact in mind,

here we present a brief summary of basic concepts related to

coincidence lattices.

Let � � Rp;q be a lattice of dimension n ¼ pþ q and let

T 2 OðnÞ be an orthogonal transformation. The group

OCð�Þ ¼ fT 2 OðnÞ j ½� : � \ T��<1g ð33Þ

is called the coincidence isometry group of �. If T 2 OCð�Þ,
then the index of the sublattice � \ T� in �, ½� : � \ T�� (the

number of right cosets), is finite and is just the ratio of the

volumes of the unit cells, i.e., the coincidence index:

�ðTÞ ¼ ½� : � \ T��: ð34Þ

Concerning lattices and sublattices, we will only need the

following lemmas, which will be useful in the following

sections:

Lemma 2. Let � ¼
Ln

i¼1 Zai � R
p;q be a lattice, where

fa1; . . . ; ang is a set of linearly independent vectors in Rp;q. If

�0 is a sublattice of � (�0<�), then for each a 2 � there exists

m 2 N such that ma 2 �0.

Proof 3. Since �0 is a subgroup of � (which is in turn

isomorphic to a finite Abelian group of order n), then the

quotient group �=�0 ¼ �0 þ a j a 2 �f g exists and its right

cosets are given by

�0 þ a ¼ bþ a j b 2 �0f g; ð35Þ

which we will denote by �0 þ a ¼ ½a�. Now, as �=�0 is a finite

group, then for each ½a� there exists an m 2 N such that

m½a� ¼ ½ma� ¼ ½0� ¼ �0. Therefore ma 2 �0.

This lemma also holds for each element of the basis.

Lemma 3. Let � ¼
Ln

i¼1 Zai and �0 ¼
Ln

i¼1 Zbi be lattices in

Rp;q. If for each ai there exists mi 2 N such that miai 2 �0, then

�0<�.

Proof 4. We have to show that �=�0 is of finite order, that

is, �=�0 has a finite number of elements. Let

ki ¼ min m 2 N j mai 2 �0
� �

. Then kiai 2 �0 or, equivalently

½kiai� ¼ ½0�, and if 0< r< ki then ½rai� 6¼ ½0� is obtained.

Let a ¼ z1a1 þ . . .þ znan 2 �. For each zi there are inte-

gers qi; ri such that zi ¼ qiki þ ri, with 0 � ri < ki. Thus

½ziai� ¼ ½riai�; ð36Þ

from which we get

½a� ¼ ½z1a1 þ . . .þ znan� ¼
Pn
i¼1

½ziai� ¼
Pn
i¼1

½riai�: ð37Þ

Therefore the group �=�0 has at most
Qn

i¼1 ki elements.

Concerning coincidence isometries, the following will be

useful:

Theorem 2. Let � ¼
Ln

i¼1 Zai be a lattice and T be an

orthogonal transformation. T 2 OCð�Þ if and only if there are

mi 2 N such that miTðaiÞ 2 �.

Proof 5. ¼)) As Tð�Þ \ �<� is of finite index, there exists

ni 2 N such that niai 2 Tð�Þ \ �. Thus niai 2 Tð�Þ. Now, ai

can be expressed as

ai ¼
Pn
i¼1

�ijT aj

� �
; ð38Þ

where A ¼ ½�ij� is the inverse of the matrix associated with T

(with respect to the basis fa1; . . . ; ang), with rational entries.

Then

T aið Þ ¼
Pn
i¼1

�ijaj; ð39Þ

where B ¼ ½�ij� ¼ A�1 has rational entries too. Therefore,

there exists mi 2 N such that miTðaiÞ 2 �.

(¼) As miTðaiÞ 2 �, then Tð�Þ \ �<� and from Lemma 3

it follows that T 2 OCð�Þ.

Given the importance of simple reflections to the study of

coincidence lattices (Rodrı́guez et al., 2005; Zou, 2006a), we

state the following theorems and lemma:

Theorem 3. Let � � Rp;q be a lattice and ’u : Rp;q
! Rp;q be a

simple reflection. If ’u 2 OCð�Þ then there exists a non-zero

� 2 R such that

�u 2 �: ð40Þ

Proof 6. If T 2 OCð�Þ then T� \ �<�. Now, by Lemma 2,

for each a 2 � there exists m 2 Z such that ma 2 T� \ �, that

is mTðaÞ ¼ TðmaÞ 2 �, which is equivalent to claiming that

there are x; y 2 � such that

y ¼ TðxÞ: ð41Þ

In particular, this is satisfied for ’u 2 OCð�Þ. Thus
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y ¼ �uxu�1; ð42Þ

yu ¼ �ux; ð43Þ

and this implies that

y � u ¼ �u � x; ð44Þ

y ^ u ¼ �u ^ x ¼ x ^ u; ð45Þ

so

ðy� xÞ ^ u ¼ 0: ð46Þ

Then ðy� xÞ and u are parallel. Therefore, there exists a non-

zero � 2 R such that �u ¼ y� x 2 �.

Theorem 4. Let � ¼
Ln

i¼1 Zai be a lattice of Rp;q and u 2 �. If

the simple reflection ’u : Rp;q
! Rp;q

2 OCð�Þ, then

u � ai

u2
2 Q ð47Þ

for i ¼ 1; . . . ; pþ q.

Proof 7. Since ’u 2 OCð�Þ, then ’uð�Þ \ �<�. Thus ’uðaiÞ

2 � and also mi’uðaiÞ 2 � for mi 2 Z, i ¼ 1; . . . ; pþ q. But,

from equation (16),

mi’uðaiÞ ¼ miai �mi

2ðu � aiÞ

u2
u; ð48Þ

mi

2ðu � aiÞ

u2
u ¼ miai �mi’uðaiÞ 2 �: ð49Þ

As u ¼
Ppþq

i¼1 �iai, where �i 2 Z (i ¼ 1; . . . ; pþ q), then

mi

2ðu � aiÞ

u2
�i 2 Z ð50Þ

and thus

ðu � aiÞ

u2
2 Q: ð51Þ

Lemma 4. Let � ¼
Ln

i¼1 Zai be a lattice of Rp;q. If a2
i ,

ai � aj 2 Q, then for each non-isotropic u 2 �

’u 2 OCð�Þ ð52Þ

holds.

Proof 8. We have that for i ¼ 1; 2,

’uðaiÞ ¼ ai � 2
u � ai

u2
u ð53Þ

and, given the hypotheses, we can see that

u � ai

u2
2 Q: ð54Þ

Thus, for each i there exists a non-zero mi 2 Q such that

mi’uðaiÞ 2 � and by Theorem 2 we conclude that ’u 2 OCð�Þ.

Finally, it is worth mentioning that ½� : � \ T��, the

coincidence index, can be calculated using determinants (see

for instance Rotman, 1995, Exercise 10.17), which in turn can

be evaluated in a metric-independent way by using the outer

product: in fact given the geometrical interpretation of the

outer product we have

Lemma 5. Let � ¼
Ln

i¼1 Zai and �0 ¼
Ln

i¼1 Zbi be lattices in

Rp;q, and �0<�. Then

½� : �0� ¼
b1 ^ . . . ^ bn

a1 ^ . . . ^ an

				
				: ð55Þ

5. CSL problem for Zp;q (p + q = 2)

The particular cases of lattices spanned by the canonical

basis of R
p;q will be denoted as Z

p;q, that is, Zp;q
¼

Ze1 	 Ze2 	 . . .	 Zen, where fe1; e2; . . . ; eng is the canonical

basis of Rp;q.

An interesting result is that given a lattice � � Rn, any

coincidence isometry of � can be decomposed as a product of

at most n reflections by hyperplanes defined by vectors of �
(for a proof, see Zou, 2006a, Th. 3.1; Aragón-González et al.,

2006, Th. 21). In Rodrı́guez et al. (2005) we studied in detail

the case of lattices in the plane R2 (p ¼ 2, q ¼ 0) by providing

coincidence indexes and bases of the coincidence lattices. In

what follows we analyze the general case of lattices in Rp;q

where pþ q ¼ 2, but, as already mentioned, the most inter-

esting case is when p ¼ q ¼ 1, that is, the hyperbolic plane. In

order to unify the treatment, this case requires special atten-

tion because isotropic vectors may appear, so first of all we

show, in Lemmas 6 and 7, how to handle these vectors.

If a lattice � � R1;1 is generated by isotropic basis vectors,

we can always find a non-isotropic basis. To see how this is

possible, consider the vectors

v1 ¼ e1 þ e2 and v2 ¼ e1 � e2; ð56Þ

where fe1; e2g is the canonical basis of Z1;1 (thus e2
1 ¼ 1 and

e2
2 ¼ �1). It is easy to verify that if x 2 R1;1, we have x2 ¼ 0 if

and only if x ¼ �v1 or x ¼ �v2, where � 2 R. Also, notice that

the orthogonal complement of v1 is the set spanned by v1 itself

and the same occurs with v2. Bearing all this in mind, we

propose the following two lemmas:

Lemma 6. Let � ¼ Za1 	 Za2 � R
1;1 be a lattice. If it turns out

that a2
1 ¼ a2

2 ¼ 0, we can always find a basis fb1; b2g for � such

that b2
1 6¼ 0 and b2

2 6¼ 0.

Proof 9. As a1 and a2 are both linearly independent and iso-

tropic, without loss of generality we can assume that

a1 ¼ �1v1 and a2 ¼ �2v2; ð57Þ

where �i 6¼ 0, for i ¼ 1; 2, v1 ¼ e1 þ e2 and v2 ¼ e1 � e2. It is

straightforward to verify that the vectors

b1 ¼ a1 þ a2 and b2 ¼ �2a1 � a2 ð58Þ

have the desired properties.

From this lemma, we can always assume that given a lattice

� ¼ Za1 	 Za2 � R
1;1 at least one of the basis vectors ai is

non-isotropic. Henceforth, when referred to the case

p ¼ q ¼ 1, we shall consider lattices with this property.

The following lemma will be used to demonstrate Propo-

sition 2:
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Lemma 7. Let T : R1;1
! R1;1 be an orthogonal transforma-

tion such that

TðxÞ � x 6¼ 0 and TðxÞ � xð Þ
2
¼ 0; ð59Þ

then both vectors, x and TðxÞ, are isotropic and linearly

dependent.

Proof 10. Taking into account that T is an orthogonal trans-

formation, i.e., ðTðxÞÞ2 ¼ x2, we have

TðxÞ � xð Þ
2
¼ 0;

TðxÞð Þ
2
�2TðxÞ � xþ x2

¼ 0;

x2 � TðxÞ � x ¼ 0;

x � x� TðxÞð Þ ¼ 0; ð60Þ

since x� TðxÞ is a non-zero isotropic vector, then

x� TðxÞ ¼ �v1 or x� TðxÞ ¼ �v2, where v1 and v2 are given

in equation (56). In both cases, it turns out that the orthogonal

complement of x� TðxÞ is the space spanned by x� TðxÞ

itself and thus from equation (60) we have that x belongs to

the space spanned by x� TðxÞ. Consequently, x is isotropic

and linearly dependent on TðxÞ. In an analogous manner, it

can be shown that

TðxÞ � x� TðxÞð Þ ¼ 0; ð61Þ

from where it is inferred that TðxÞ is isotropic and linearly

dependent on x.

Proposition 2. Let � ¼ Za1 	 Za2 be a lattice of Rp;q, where

pþ q ¼ 2. If T 2 OCð�Þ, there exist c1, c2 2 � such that

T ¼ ’c1
ð62Þ

or

T ¼ ’c1
’c2
: ð63Þ

Proof 11. Assume that T is different from the identity. We can

also assume, without loss of generality, that a2
1 6¼ 0.

Let us first consider that Tða1Þ � a1 ¼ 0. In this case

T ¼ ’c1
, where c1 2 �. Indeed, since a1 is non-isotropic there

exists b1 such that fa1; b1g is a non-isotropic orthogonal basis

of Rp;q. Since Tða1Þ ¼ a1, then Tðb1Þ ¼ �b1 for some � 2 R,

but as T is an orthogonal transformation different from the

identity, necessarily Tðb1Þ ¼ �b1 and thus T ¼ ’b1
. Since

T 2 OCð�Þ, from Theorem 3 we have that there exists � 2 R
such that c1 ¼ �b1 2 � and therefore T ¼ ’c1

.

Now suppose that Tða1Þ � a1 6¼ 0 and ðTða1Þ � a1Þ
2
¼ 0.

From Lemma 7 it turns out that Tða1Þ and a1 are isotropic,

which is a contradiction. Therefore, there must be ai such that

TðaiÞ � ai is non-isotropic. By Lemma 2, there exists mi 2 Z

such that miðTðaiÞ � aiÞ 2 �. If c1 ¼ miðTðaiÞ � aiÞ, then

’c1
TðaiÞ ¼ ai: ð64Þ

Thus, we have two possibilities: (a) if detðTÞ ¼ �1, then

T ¼ ’c1
and (b) if detðTÞ ¼ 1, then ’c1

T 2 OCð�Þ is a simple

reflection, say ’c1
T ¼ ’u 2 OCð�Þ. According to Theorem 3,

there exists c2 ¼ �u 2 �, therefore

’c1
T ¼ ’c2

;

T ¼ ’c1
’c2
: ð65Þ

Finally, we should mention that Proposition 2 is the neces-

sary condition; for the sufficiency condition we have:

Theorem 5. Let � ¼ Za1 	 Za2 be a lattice of Rp;q, where

pþ q ¼ 2 and ai � aj 2 Q, ði; j ¼ 1; 2Þ. Then T 2 OCð�Þ if and

only if there exist c1; c2 2 � such that

TðxÞ ¼ ’c1
’c2
ðxÞ ¼ c1c2xc�1

2 c�1
1 : ð66Þ

In what follows, we will assume that the hypotheses of

Theorem 5 are fulfilled.

Given any u 2 �, there exists � 2 Z such that v ¼

�ðu � ða1 ^ a2ÞÞ 2 �, and moreover v � u ¼ 0. Indeed, by the

identity (9) we have

u � ða1 ^ a2Þ ¼ ðu � a1Þa2 � ðu � a2Þa1 ð67Þ

and, as ðu � aiÞ 2 Q, we can find a positive integer such that

�ðu � aiÞ 2 Z for i ¼ 1; 2. Obviously, v is orthogonal to u.

Let any u ¼ �1a1 þ �2a2 2 � and if we consider the simple

reflection ’u, it is evident that

’uðuÞ ¼ �u; ð68Þ

’uðvÞ ¼ v: ð69Þ

Therefore, the lattice � ¼ Zu	 Zv must satisfy the following

relations:

�<� \ ’uð�Þ>�; ð70Þ

½� : �� ¼ ½� \ ’uð�Þ : ��½� : � \ ’uð�Þ� ð71Þ

½� : �� ¼ ½� \ ’uð�Þ : ���ð’uÞ: ð72Þ

Since it is known that given two lattices � ¼ Za1 	 Za2 and

�0 ¼ Zb1 	 Zb2 such that �0<�, then ½� : �0� is equal to the

ratio of the volume of the unit cell defined by the vectors

fb1; b2g to the volume of the unit cell defined by the vectors

fa1; a2g. As a consequence, we have that the ratio

½� : ��=�ð’uÞ is an integer and it is said that �ð’uÞ divides

½� : �� and is denoted as

�ð’uÞ j ½� : ��: ð73Þ

Here ½� : �� ¼ jðu ^ vÞ=ða1 ^ a2Þj. Computation leads to

u ^ v ¼ �u2ða1 ^ a2Þ: ð74Þ

Thus, we have proved the following:

Proposition 3. Let � ¼ Za1 	 Za2 be a lattice of Rp;q, where

pþ q ¼ 2. If ai � aj 2 Q, i; j ¼ 1; 2, then for any non-isotropic

u 2 � the following holds:

(1) There exists � 2 Z such that v ¼ �u � ða1 ^ a2Þ 2 �,

where v is orthogonal to u.

(2) �ð’uÞ divides �ðu2Þ, where � 2 Z is the same as in (1).

Proposition 3 and the next one (Proposition 4) will be useful

for finding a basis and the coincidence index for two-

dimensional lattices and will be used in the next section. The
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following reasoning corresponds to a demonstration of

Proposition 4:

A basis of ’uð�Þ \ �, where ’u is a simple reflection, can be

found as follows. First, the simple reflections ’u and ’�u are the

same for all non-zero � 2 R (or, better, Z). Then, we can

consider, without loss of generality, that ’u, where u ¼

�1a1 þ �2a2, satisfies gcdð�1; �2Þ ¼ 1, where gcd stands for the

greatest common divisor. Thus, there is a w 2 � such that

� ¼ Zu	 Zw: ð75Þ

Indeed, as gcdð�1; �2Þ ¼ 1, then there exist �1; �2 2 Z satis-

fying

�1�1 þ �2�2 ¼ 1 ð76Þ

and it is enough to choose w ¼ ��2a1 þ �1a2, since

u ^ w ¼ ð�1�1 þ �2�2Þa1 ^ a2 ¼ a1 ^ a2: ð77Þ

Now,

’uðuÞ ¼ �u 2 � \ ’uð�Þ ð78Þ

and we can choose the least m 2 N such that

m’uðwÞ 2 � \ ’uð�Þ: ð79Þ

Finally, we claim that a basis for the coincidence lattice

� \ ’uð�Þ is given by

fu;m’uðwÞg: ð80Þ

Indeed, let y 2 � \ ’uð�Þ, then there exists x ¼ �uþ �w 2 �,

where �; � 2 Z, such that

y ¼ ’uðxÞ

¼ �’uðuÞ þ �’uðwÞ

¼ ��uþ �’uðwÞ; ð81Þ

thus

yþ �u ¼ �’uðwÞ; ð82Þ

and since m 2 N is the least number that satisfies m’uðwÞ

2 � \ ’uð�Þ, then

� ¼ km; ð83Þ

where k is an integer. An important consequence is that the

coincidence index is exactly m because

’uðuÞ ^ m’uðwÞ
� �

a1 ^ a2

				
				 ¼ m: ð84Þ

Thus, we have the following proposition:

Proposition 4. Let � ¼ Za1 	 Za2 be a lattice of Rp;q where

pþ q ¼ 2 and ai � aj 2 Q (i; j ¼ 1; 2). Then, for non-isotropic

u ¼ �1a1 þ �2a2 2 �, where gcdð�1; �2Þ ¼ 1, we have:

(1) There exists w 2 �, such that fu;wg is a basis of �.

(2) If m is the least natural number such that m’uðwÞ

2 � \ ’uð�Þ, then �ð’uÞ ¼ m.

A basis for the coincidence lattice � \ ’uð�Þ is given by

equation (80).

6. Bases and coincidence index for two-dimensional
lattices

In this section, coincidence lattices in Rp;q with pþ q ¼ 2 will

be studied. A particularly interesting case is when p ¼ q ¼ 1,

that is, lattices in the hyperbolic plane. Analytic expressions

for the coincidence index and bases for the coincidence

lattices are provided. Unless otherwise explicitly stated,

throughout this section we work in Rp;q where pþ q ¼ 2.

It should be pointed out that the factorization of an

orthogonal transformation as a product of simple reflections

by hyperplanes is not unique. This fact, however, can be used

to find an adequate factorization as follows. Assume that

T 2 OCð�Þ, where � � Rp;q and detðTÞ ¼ 1. If we can find

vectors c1; c2 2 � such that

T ¼ ’c1
’c2

and ’c2
ð�Þ ¼ �; ð85Þ

then Tð�Þ ¼ ’c1
ð�Þ and the problem of finding the

coincidence index and a basis for Tð�Þ \ � is reduced to the

problem of finding the coincidence index and a basis for

’c1
ð�Þ \ �. We can use Proposition 4 for this purpose. In the

next section we analyze some interesting cases where it was

possible to apply this strategy.

6.1. Pseudo-square lattices

We will explore the properties of the pseudo-square lattices

in order to find the coincidence index and a basis for � ¼ Zp;q.

Applying Propositions 1 and 4 we obtain the following

corollary:

Corollary 1. Let � ¼ Zp;q and let fe1; e2g be the canonical basis

of Rp;q. If T 2 OCð�Þ then there exists u 2 Zp;q such that

TðxÞ ¼
’uðxÞ if detðTÞ ¼ �1;
’u’ei
ðxÞ if detðTÞ ¼ 1;

�
ð86Þ

for i ¼ 1; 2. Furthermore, �ðTÞ divides u2.

Remark 2. The previous corollary extends Proposition 5 of

Rodrı́guez et al. (2005) to any p; q such that pþ q ¼ 2.

Furthermore, the group OCðZp;q
Þ has been characterized and

we can obtain any element of OCðZp;q
Þ, since our theorems

contain implicitly the required procedures.

6.1.1. Coincidence index and a basis of the CSL. In what

follows, we shall obtain the coincidence index for OCðZp;q
Þ.

Since ’ei
ðZp;q
Þ ¼ Zp;q, we can apply the strategy discussed at

the beginning of this section, since

ð’u’ei
ÞðZp;q

Þ \ Zp;q
¼ ’uðZ

p;q
Þ \ Zp;q; ð87Þ

where u 2 Zp;q.

Now, it follows from Corollary 1 that for any T 2 OCðZp;q
Þ

we can find a non-isotropic vector u 2 Zp;q such that

TðxÞ ¼ �uxu�1 or TðxÞ ¼ ueixe�1
i u�1; ð88Þ

where i can be chosen as 1 or 2. Then to analyze the group

OCðZp;q
Þ it is enough to consider the isometries

’uðxÞ ¼ �uxu�1 or RuðxÞ ¼ ueixe�1
i u�1; ð89Þ
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where i can be chosen as 1 or 2 and it is clear that there are two

rotations Ru, one with e1 and another with e2. Besides,

’uðZ
p;q
Þ \ Zp;q

¼ RuðZ
p;q
Þ \ Zp;q; ð90Þ

�ð’uÞ ¼ �ðRuÞ: ð91Þ

That is, if we want to obtain a basis of RuðZ
p;q
Þ \ Zp;q it is

enough to calculate a basis of ’uðZ
p;q
Þ \ Zp;q.

With these last results, we can also extend Proposition 6 of

Rodrı́guez et al. (2005) to the following:

Proposition 5. If u ¼ �1e1 þ �2e2 2 Z
p;q and gcdð�1; �2Þ ¼ 1,

then

�ð’uÞ ¼ �ðRuÞ ¼
ju2j=2 if �1 and �2 are both odd;
ju2j if either �1 or �2 is even:

�

ð92Þ

Proof 12. The proof is similar to that given in Rodrı́guez et al.

(2005) with some changes. Here we only focus on these

changes. Let ’u 2 OCðZp;q
Þ, where u ¼ �1e1 þ �2e2 2 Z

p;q

and gcdð�1; �2Þ ¼ 1. Since

’uðxÞ ¼ �uxu�1
¼ �

uxu

u2
; ð93Þ

then

’uðe1Þ ¼ �
ð�2

2 þ �
2
1Þe1 þ 2�1�2e2

�2
1 � �

2
2

; ð94Þ

’uðe2Þ ¼
2�1�2e1 þ ð�

2
1 þ �

2
2Þe2

�2
1 � �

2
2

: ð95Þ

Thus we obtain that

u2’uðeiÞ 2 Z
p;q; ð96Þ

and we have to consider two cases:

(1) �1; �2 are odd numbers. In this case �2
1 þ �

2
2, 2�1�2 and

�2
1 � �

2
2 are even numbers.

Therefore

u2

2
’uðeiÞ 2 Z

p;q
ð97Þ

for i ¼ 1; 2. It only remains to show that ju2j=2 is the least

positive integer such that ðju2j=2Þ’uðeiÞ 2 Z
p;q, because in that

case ju2j=2 divides �ð’uÞ. Indeed, it is clear that ju2j=2 is a

positive integer such that

ju2j

2
’uðe1Þ 2 Z

p;q: ð98Þ

Let m be the order of ½’uðe1Þ� � Z
p;q=ðZp;q

\ ’uðZ
p;q
ÞÞ. We

have that m j ju2j=2 and m � ju2j=2, thus there exists an

integer � such that

ju2j

2
¼ m� ð99Þ

and also

m’uðe1Þ 2 Z
p;q: ð100Þ

Since

’uðe1Þ ¼ �
�2

1 þ �
2
2

u2
e1 þ

2�1�2

u2
e2; ð101Þ

then

2mj�1jj�2j

ju2j
and

2mj�1jj�2j

2m�
ð102Þ

are integers. Thus

� j j�1jj�2j and � j ju2j: ð103Þ

As gcdð�1; �2Þ ¼ 1, we can propose

gcdð�1; �2; u2Þ ¼ 1; ð104Þ

which yields � ¼ 1 and the order of ’uðe1Þ turns out to be

ju2j=2.

A similar argument is used to prove that the order of ’uðe2Þ

is ju2j=2.

(2) Either �1 or �2 is even. In this case, following the above

procedure, it can also be proved that ju2j is the least positive

integer such that ju2j’uðeiÞ 2 Z
p;q.

With these results, formulae for �ð’uÞ are obtained as in the

proof of Lemma 3 in Rodrı́guez et al. (2005).

We can also characterize the CSL of Zp;q and the demon-

stration leads to an explicit construction of the basic vectors.

Theorem 6. Let u ¼ �1e1 þ �2e2 2 Z
p;q and gcdð�1; �2Þ ¼ 1.

Then, Zp;q
\ ’uðZ

p;q
Þ and Zp;q

\ RuðZ
p;q
Þ are pseudo-square

lattices.

The proof is completely similar to that given in Rodrı́guez et

al. (2005).

A pseudo-square basis fc; dg of Zp;q
\ ’uðZ

p;q
Þ, where c; d

2 Z
p;q, is given by

c ¼ 1
2 ðu� vÞ ¼ ’uðc

0Þ; ð105Þ

d ¼ 1
2 ðuþ vÞ ¼ ’uðd

0Þ; ð106Þ

where v ¼ �2e1 þ �1e2 (v orthogonal to u), c0 ¼ � 1
2 ðuþ vÞ

and d0 ¼ 1
2 ðv� uÞ.

Corollary 2. If T : Rp;q
! Rp;q is a transformation such that

T 2 OCðZp;q
Þ, then Zp;q

\ TðZp;q
Þ is a pseudo-square lattice.

For instance, a basis and the coincidence index for a rota-

tion R 2 OCðZp;q
Þ can be found, as illustrated in Table 1,

where u ¼ � Rðe1Þ � e1ð Þ 2 Zp;q has relatively prime coeffi-

cients �1, �2, � 2 Z and v ¼ ue1e2.

6.2. Pseudo-rhombic lattices

Let � ¼ Za1 þ Za2 be a pseudo-rhombic lattice in Rp;q, i.e.,

a2
1 ¼ a2

2. We can assume, without generality loss, that

a2
1 ¼ a2

2 ¼ 1. Notice that fa1 þ a2; a1 � a2g is an orthogonal

basis of Rp;q.
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Table 1
Basis and coincidence index for a rotation R 2 OCðZp;q

Þ, p + q = 2.

Basis of Zp;q
\ RðZp;q

Þ Coincidence index

u2 odd fu; vg u2
		 		

u2 even f12 ðu� vÞ; 1
2 ðuþ vÞg u2

		 		=2



By Propositions 3 and 4 the following corollary is

immediate.

Corollary 3. Let � ¼ Za1 	 Za2 be a lattice in Rp;q such that

a2
1 ¼ a2

2 ¼ 1, a1 � a2 6¼ �1 2 Q, then the following propositions

hold:

(1) If T : Rp;q
! Rp;q, T 2 OCð�Þ, different from the

identity, then there exists c 2 � such that

TðxÞ ¼
’cðxÞ if detðTÞ ¼ �1;
’c’di
ðxÞ if detðTÞ ¼ 1;

�
ð107Þ

where i can be chosen as 1 or 2, d1 ¼ a1 þ a2 and d2 ¼ a1 � a2.

(2) There exists � 2 N such that v ¼ �c � ða1 ^ a2Þ 2 �,

where v is orthogonal to c.

(3) �ð’cÞ divides �ðc2Þ.

Remark 3. The condition a1 � a2 6¼ �1 is required to assure

that d1 and d2 are both non-isotropic. Part (1) tells us that

T 2 OCð�Þ is at most the composition of two simple reflec-

tions of OCð�Þ. Furthermore, with these results, Proposition

11 of Rodrı́guez et al. (2005) becomes a corollary.

Since ’c ¼ ’�c for any � 2 R, then we can assume that c has

coordinates that are relatively prime with respect to the basis

fa1; a2g.

By following the same ideas applied to the case of the

pseudo-square lattice, we have that every vector c 2 � defines

the two orthogonal transformations

’cðxÞ ¼ �cxc�1; ð108Þ

’c’di
ðxÞ ¼ RcðxÞ ¼ cdixd�1

i c�1: ð109Þ

In particular, if ’cðxÞ 2 OCð�Þ then, since ’di
ð�Þ ¼ �,

� \ ’cð�Þ ¼ � \ Rcð�Þ; ð110Þ

�ð’cÞ ¼ �ðRcÞ; ð111Þ

and a basis of � \ Rcð�Þ can be obtained if a basis of � \ ’cð�Þ
is known.

6.2.1. Coincidence index and basis of the CSL. The

procedure for determining the coincidence index �ð’cÞ and a

basis of the CSL, � \ ’cð�Þ, of the pseudo-rhombic lattice

follows the same lines as in the proof of Proposition 4. For that

reason, here we only summarize the results without further

details.

Let � ¼ Za1 	 Za2 be a lattice in Rp;q, such that a2
1 ¼ a2

2.

From Proposition 4, we know that there exists c ¼ �1a1

þ �2a2 2 �, where gcdð�1; �2Þ ¼ 1, such that ’c 2 OCð�Þ. We

know also that there exists a vector d 2 � such that

� ¼ Zc	 Zd; in fact d ¼ ��2a1 þ �1a2, where �1�1 þ �2�2

¼ 1.

A basis of � \ ’cð�Þ is

fc;m’cðdÞg; ð112Þ

where m is the least natural number such that

m’cðdÞ 2 � \ ’cð�Þ: ð113Þ

The natural number m is also the coincidence index �ð’cÞ, and

its value can be obtained from the rational components of

’cðdÞ with respect to the basis fa1; a2g as indicated in Rodrı́-

guez et al. (2005), i.e. if

’cðdÞ ¼
r1

n1

a1 þ
r2

n2

a2; ð114Þ

where r1; r2; n1; n2 2 Z, then

�ð’cÞ ¼ m ¼ lcmðn1; n2Þ; ð115Þ

where lcm stands for the least common multiple.

Now, consider a vector u 2 � ¼ Za1 	 Za2. From Theorem

4 we know that ’u is a coincidence reflection provided that

ðu � aiÞ

u2
2 Q: ð116Þ

With this condition the reasoning follows the same lines as

in the last part of the Section 6.2 of Rodrı́guez et al. (2005);

given c ¼ �1a1 þ �2a2 2 �, where gcdð�1; �2Þ ¼ 1, then by

substituting in (116) we get that ’c 2 OCð�Þ provided that

a1 � a2 2 Q; if a1 � a2 =2 Q then we need d1 ¼ a1 þ a2 and

d2 ¼ a1 � a2, and in this last case we have that

OCð�Þ ¼ fI; ’d1
; ’d2

; ’d1
’d2
g: ð117Þ

6.3. Pseudo-rectangular lattices

Let � ¼ Za1 	 Za2 be a pseudo-rectangular lattice, i.e.,

a1 � a2 ¼ 0. Without loss of generality, we can suppose that

a2
1 ¼ 1. From Propositions 3 and 4 the following corollary is

immediate.

Corollary 4. Let � ¼ Za1 	 Za2 be a pseudo-rectangular

lattice in Rp;q, a1 � a2 ¼ 0, a2
1 ¼ 1 and a2

2 2 Q. Then the

following propositions hold:

(1) If T : Rp;q
! Rp;q, T 2 OCð�Þ, different from the

identity, then there exists c 2 � such that

TðxÞ ¼
’cðxÞ if detðTÞ ¼ �1;
’c’ai
ðxÞ if detðTÞ ¼ 1;

�
ð118Þ

where i can be chosen as 1 or 2.

(2) There exists � 2 N such that v ¼ �c � ða1 ^ a2Þ 2 �,

where v is orthogonal to c.

(3) �ð’cÞ divides �ðc2Þ.

Part (1) generalizes Proposition 9 of Rodrı́guez et al. (2005).

6.3.1. Coincidence index and basis of the CSL. The

procedure for determining the coincidence index �ð’cÞ and a

basis of the CSL, � \ ’cð�Þ, follows the same lines as in the

case of the pseudo-rhombic lattice. For that reason, here we

only summarize the results without further details.

Let

’cðxÞ ¼ �cxc�1; ð119Þ

RcðxÞ ¼ caixa�1
i c�1; ð120Þ

Rcð�Þ \ � ¼ ’cð�Þ \ �; ð121Þ

where c 2 �. Again, as in equation (115), we have that

�ð’cÞ ¼ m ¼ lcmðn1; n2Þ; ð122Þ

where n1 and n2 correspond to equation (114).
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A basis of � \ ’cð�Þ is

fc;m’cðdÞg; ð123Þ

where m is the least natural number such that equation (113) is

fulfilled, c and d are defined in x6.2.1.

Finally, to characterize OCð�Þ we notice that since a2
1 ¼ 1,

the reasoning follows the same lines as in Section 5.2 of

Rodrı́guez et al. (2005) to obtain that if a2
2 =2 Q, then

OCð�Þ ¼ fI; ’a1
; ’a2

; ’a2
’a1
g: ð124Þ

7. Conclusions

We have generalized our previous work on coincidence

lattices to cover the case of the space Rp;q for pþ q ¼ 2. This

required a consideration of the Cartan–Dieudonné theorem

and the development of a constructive view leading to explicit

expressions for the simple reflections factoring a given

orthogonal transformation.

We have formulated the CSL problem for lattices in Rp;q

(pþ q ¼ 2) using Clifford algebras in a metric-independent

way and have constructed explicitly the bases and coincidence

indices for several interesting cases. We also show that in this

case any coincidence isometry can be decomposed as a

product of at most two reflections by vectors of the lattice.

In this way we argue that Clifford algebra is the right tool

for this and other important problems in crystallography.
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